Category: Sustainable Ammonia

Next-generation ammonia tech: biohybrid nanoparticles

Sustainable ammonia can be produced today: doing so would use electrolyzers to make hydrogen to feed the traditional Haber-Bosch process. In a very few years, new technologies will skip this hydrogen production phase altogether and make ammonia directly from renewable power in an electrochemical cell. Further down the pipeline, next generation technologies will mimic nature, specifically the nitrogenase enzyme, which produces ammonia naturally.

One of these next generation technologies is currently producing impressive results at the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL).

Read more

Sustainable ammonia synthesis: SUNCAT’s lithium-cycling strategy

New research coming out of Stanford University suggests a fascinating new direction for electrochemical ammonia synthesis technology development.

The US-Danish team of scientists at SUNCAT, tasked with finding new catalysts for electrochemical ammonia production, saw that 'selectivity' posed a tremendous challenge - in other words, most of the energy used by renewable ammonia production systems went into making hydrogen instead of making ammonia.

The new SUNCAT solution does not overcome this selectivity challenge. It doesn't even try. Instead, these researchers have avoided the problem completely.

Read more

Ammonia for grid-scale power: Nuon, Gasunie, and Statoil

A new collaboration was announced last week, between Dutch power company Nuon, European natural gas pipeline operator Gasunie, and Norwegian oil major Statoil. The joint venture will look at converting one of the Magnum power plant's three 440 MW gasifiers, with hopes to have it running on hydrogen fuel by 2023.

This is the continuation of the Power to Ammonia project and, although ammonia is not expected to be used in this particular stage of the project, converting Magnum to hydrogen fuel represents the "intermediate step" to demonstrate that "where hydrogen could be produced using natural gas by 2023, from the year 2030 it could be possible to produce it with sustainably produced ammonia ... Ammonia then effectively serves as a storage medium for hydrogen, making Magnum a super battery."

Read more

The International Energy Agency’s scenarios for renewable ammonia

The International Energy Agency (IEA) has just published Energy Technology Perspectives 2017, the latest in its long-running annual series, subtitled "Catalysing Energy Technology Transformations."

In this year's edition, for the first time, ammonia is featured in two major technology transformations. First, ammonia production is shown making a significant transition away from fossil fuel feedstocks and towards electrification, using hydrogen made with electrolyzers. And, following this assumption that sustainable ammonia will be widely available in the future, the IEA takes the next logical step and also classifies ammonia "as an energy carrier," in the category of future "electricity-based fuels (PtX synthetic fuels)."

The inclusion of this pair of technology transformations represents a major step towards broader acceptance of ammonia as an energy vector, from the perspectives of both technical feasibility and policy imperative.

Read more

Renewable ammonia: competitive with SMR technology today (in the right place)

The viability of producing ammonia using renewable energy was one of the recurring themes of the recent Power to Ammonia conference in Rotterdam. Specifically, what cost reductions or market mechanisms would be necessary so that renewable ammonia - produced using electrolytic hydrogen in a Haber-Bosch plant - would be competitive with normal, "brown" ammonia, made from fossil fuels.

A number of major industry participants addressed this theme at the conference, including Yara and OCI Nitrogen, but it was the closing speech, from the International Energy Agency (IEA), that provided the key data to demonstrate that, because costs have already come down so far, renewable ammonia is cost-competitive in certain regions today.

Read more

Electrochemical ammonia synthesis in South Korea

One of the many encouraging announcements at the recent Power-to-Ammonia conference in Rotterdam was the news that the Korea Institute of Energy Research (KIER) has extended funding for its electrochemical ammonia synthesis research program by another three years, pushing the project forward through 2019.

KIER's research target for 2019 is significant: to demonstrate an ammonia production rate of 1x10-7 mol/s·cm2.

If the KIER team can hit this target, not only would it be ten thousand times better than their 2012 results but, according to the numbers I'll provide below, it would be the closest an electrochemical ammonia synthesis technology has come to being commercially competitive.

Read more

Power to Ammonia: alternative synthesis technologies

The Institute for Sustainable Process Technology (ISPT) recently published a detailed analysis of three business cases for producing renewable ammonia from electricity: Power to Ammonia. The feasibility study concludes that, in the near term, ammonia production using clean electricity will likely rely on a combination of two old-established, proven technologies: electrolysis and Haber-Bosch (E-HB). To reach this conclusion, however, the study also assessed a range of alternative technologies, which I summarize in this article.

Read more

Power to Ammonia: The OCI Nitrogen – Geleen case

The Power-to-Ammonia feasibility study includes an assessment of the costs and benefits of producing ammonia from renewable energy at OCI Nitrogen's existing production site in Geleen.

Of all the companies who joined forces in the Power-to-Ammonia project, OCI is the only ammonia producer. Its business case for making carbon-free ammonia is especially interesting therefore: not just because of the company's deep understanding of the ammonia market and available technologies, but also because it faces corporate exposure to the financial, operational, and social risks of relying upon a fossil-fueled technology in a carbon constrained future.

Read more

Power to Ammonia: The Stedin – Goeree-Overflakkee case

Goeree-Overflakkee, in the southwest corner of The Netherlands, already produces more renewable power than it can consume. But, by 2020, this small island will generate a full 300 MWe of solar and wind, which far "exceeds the electricity demand on the island, rated at maximum 30 MWe peak."

Stedin, the local grid operator, has the expensive task of integrating these and future renewable resources into its electricity distribution system.

The recent Power-to-Ammonia study included a detailed analysis of Stedin's business case for producing renewable ammonia as a way to store and transport this electricity - enabling the island to become a net exporter of clean energy.

Read more

Power to Ammonia: The Nuon – Eemshaven case

The Institute for Sustainable Process Technology recently published a feasibility study, Power to Ammonia, looking at the possibility of producing and using ammonia in the renewable power sector. This project is based in The Netherlands and is led by a powerful industrial consortium.

I wrote about the feasibility study last month, but it deserves closer attention because it examines three entirely separate business cases for integrating ammonia into a renewable energy economy, centered on three site-specific participants in the study: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen.

Over the next few years, the group intends to build pilot projects to develop and demonstrate the necessary technologies. Next month, however, these projects will be an important part of the Power-to-Ammonia Conference, in Rotterdam on May 18-19.

This article is the first in a series of three that aims to introduce each business case.

Read more

IEA calls for renewable hydrogen and carbon-free ammonia

This week, an important new voice joined the chorus of support for renewable ammonia and its potential use as an energy vector - the International Energy Agency (IEA).

In his article, Producing industrial hydrogen from renewable energy, Cédric Philibert, Senior Energy Analyst at the IEA, identifies a major problem with the hydrogen economy: hydrogen is currently made from fossil fuels. But his argument for producing hydrogen from renewable energy leads almost inevitably to ammonia: "In some not-too-distant future, ammonia could be used on its own as a carbon-free fuel or as an energy carrier to store and transport energy conveniently."

Read more

Solar-Bio-GMO-Ammonia, powered by the ‘Bionic Leaf’

There will be many ways to make ammonia in the future and, regardless of breakthroughs in chemical catalysts and engineering design, genetically modified organisms will play an increasingly important role.

At this week's American Chemical Society meeting, Daniel Nocera from Harvard University introduced his new ammonia synthesis technology. It builds on his "artificial leaf" that produces and stores hydrogen using power from sunlight. Nocera's latest innovation is to couple this system with a microbe that naturally contains nitrogenase, the enzyme that fixes atmospheric nitrogen into ammonia.

The end result - a robust population of nitrogen fertilizer-emitting microbes - can be delivered to the soil simply by watering the plants.

Read more

Power to Ammonia

The Institute for Sustainable Process Technology has just published a feasibility study that represents a major step toward commercializing renewable ammonia.

It examines the "value chains and business cases to produce CO2-free ammonia," analysing the potential for commercial deployment at three companies with existing sites in The Netherlands: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. The project is called Power to Ammonia.

The team behind it is an industrial powerhouse with serious intentions, and this feasibility study is the first part of their plan: next come the pilot plants and demonstrations. As OCI Nitrogen explains, "there are still many hurdles to be overcome. By setting up pilots for this new technology, we can identify these and find ways to solve them."

Read more

Industrial demonstrations of ammonia fuel in Japan

Most of the ammonia energy projects I write about are in the research and development phase but, as I've said before, technology transfer from the academic lab to commercial deployment is moving swiftly - especially in Japan.

Last week, Nikkei Asian Review published two articles outlining plans by major engineering and power firms to build utility-scale demonstrations using ammonia as a fuel for electricity generation. Both projects aim to reduce the carbon intensity of the Japanese electrical grid, incrementally but significantly, by displacing a portion of the fossil fuels with ammonia. The first project will generate power using an ammonia-coal mix, while the second will combine ammonia with natural gas.

Read more

Ammonia for energy storage: economic and technical analysis

Developers around the world are looking at using ammonia as a form of energy storage, essentially turning an ammonia storage tank into a very large chemical battery.

In the UK, Siemens is building an "all electric ammonia synthesis and energy storage system." In the Netherlands, Nuon is studying the feasibility of using Power-to-Ammonia "to convert high amounts of excess renewable power into ammonia, store it and burn it when renewable power supply is insufficient."

While results from Siemens could be available in 2018, it might be 2021 before we see results from Nuon, whose "demonstration facility is planned to be completed in five years." But, while we wait for these real-world industrial data, the academic literature has just been updated with a significant new study on the design and performance of a grid-scale ammonia energy storage system.

Read more

International R&D on sustainable ammonia synthesis technologies

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area.

This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.

Read more

Comparative studies of ammonia production, combining renewable hydrogen with Haber-Bosch

In recent months, research teams from both Canada and Italy have published comparative analyses of sustainable ammonia production pathways.

These projects aim to quantify the costs and benefits of combining Haber-Bosch with a renewable hydrogen feedstock. Both projects examine the carbon intensity of ammonia production but, while the Canadian study broadens its remit to a full life cycle analysis, including global warming potential, human toxicity, and abiotic depletion, the Italian study focuses primarily on energy efficiency.

Read more

US DOE funding research into sustainable ammonia synthesis

The US Department of Energy (DOE) is currently supporting six fundamental research projects that will develop "novel catalysts and mechanisms for nitrogen activation," which it hopes will lead to future sustainable ammonia synthesis technologies.

These projects, announced in August 2016 and administered by the Office of Basic Energy Sciences, aim "to investigate some of the outstanding scientific questions in the synthesis of ammonia (NH3) from nitrogen (N2) using processes that do not generate greenhouse gases."

Read more

Australian solar-ammonia exports to Germany

I recently wrote about a vast future market for merchant ammonia: transporting carbon-free energy from Australia's deserts to Japan's electricity grid.

Now, however, it is clear that Japan could face international competition for Australia's solar-ammonia resources. Jeff Connolly, CEO of Siemens Pacific, wrote last month about his ambitions for ammonia as an energy export commodity.

Read more

ARPA-E funding for renewable ammonia synthesis technologies

Last week, ARPA-E announced funding for eight technologies that aim to make ammonia from renewable electricity, air, and water.

The technological pathways being developed include adaptations of the Haber-Bosch process - seeking improvements in catalysts and absorbents - as well as novel electrochemical processes.

Each of these awards must produce an "end-of-project deliverable." For chemical processes, this will be a "bench scale reactor" that produces >1 kg of ammonia per day; and for electrochemical projects, it will be a "short stack prototype" capable of producing >100 g of ammonia per day.

Read more

Breakthrough Energy Coalition targets carbon-free ammonia

A multi-billion dollar clean energy innovation fund was launched last year, at the Paris climate conference. Led by Bill Gates, the private funding enterprise aimed to develop "groundbreaking new carbon-neutral technologies," without specifying details.

Now, the Breakthrough Energy Coalition is starting work, and one of its initial Technical Quests is to make "Zero-GHG Ammonia Production" a reality.

Read more

Grand Challenges in Sustainable Ammonia Synthesis – DOE Roundtable Report, 2016

Earlier this year, the US Department of Energy (DOE) hosted a day-long meeting "to explore the scientific challenges associated with discovering alternative, sustainable processes for ammonia production."

The report that came out of this roundtable discussion presents the participants' views on "the current state-of-the-art and the potential challenges and research opportunities ... for heterogeneous catalysis and homogeneous and enzyme catalysis."

Read more

Low-carbon ammonia synthesis: Japan’s ‘Energy Carriers’ R&D

In 2018, a pilot plant in Japan will demonstrate a new way to produce ammonia at industrial-scale, with a low carbon footprint.

This is part of Japan's 'Energy Carriers' R&D initiative, which aims to develop technologies to enable the nation's transition to a carbon-free hydrogen economy.

The scope of the program covers ten subjects that encompass the full "CO2-free hydrogen value chain." Three of these ten programs describe a technology pathway for making low-carbon ammonia.

Read more