Tag: University of Minnesota

Future Ammonia Technologies: Plasmas, Membranes, Redox

I wrote recently about two pathways for ammonia production technology development: improvements on Haber-Bosch, or electrochemical synthesis.

Last week, I covered some of these Haber-Bosch improvements; next week, I'll write about electrochemical processes. This week, I want to write about some innovations that don't fit this two-way categorization: they don't use electrochemistry and they don't build upon the Haber-Bosch process, and that might be the only thing that links them.

Read more

Improvement of Haber-Bosch: Adsorption vs. Absorption

At the recent NH3 Energy+ Topical Conference, Grigorii Soloveichik described the future of ammonia synthesis technologies as a two-way choice: Improvement of Haber-Bosch or Electrochemical Synthesis.

Two such Haber-Bosch improvement projects, which received ARPA-E-funding under Soloveichik's program direction, also presented papers at the conference. They each take different approaches to the same problem: how to adapt the high-pressure, high-temperature, constant-state Haber-Bosch process to small-scale, intermittent renewable power inputs. One uses adsorption, the other uses absorption, but both remove ammonia from the synthesis loop, avoiding one of Haber-Bosch's major limiting factors: separation of the product ammonia.

Read more

Morris, MN — University of Minnesota

UPDATED: 11/24/2014 — see Change Log

OWNER: University of Minnesota
PROJECT: Pilot plant

SUMMARY STATUS: Operational
The Wind-To-Ammonia project at the University of Minnesota is a fully operational pilot plant, demonstrating the feasibility of using renewable energy to produce carbon-free ammonia.

Read more